Reconstruction of Global Long-Term Gap-Free Daily Surface Soil Moisture from 2002 to 2020 Based on a Pixel-Wise Machine Learning Method

Author:

Mi Pei12,Zheng Chaolei1ORCID,Jia Li1ORCID,Bai Yu12

Affiliation:

1. State Key Laboratory of Remote Sensing Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Global, long-term, gap-free, high quality soil moisture products are extremely important for hydrological monitoring and climate change research. However, soil moisture products produced from satellite observations have data gaps due to the limited capabilities of satellite orbit/swath and retrieval algorithms, which limit the regional and global applications of soil moisture data in hydrology and agriculture studies. To solve this problem, we proposed a gap-filling method to reconstruct a global gap-free surface soil moisture product by applying the machine learning (Random Forest) algorithm on a pixel-by-pixel basis, taking into account the nonlinear relationship between surface soil moisture and the related surface environmental variables. The gap-filling method was applied to the NN-SM surface soil moisture product, which has a fraction of data gaps of around 50% globally on a multi-year average. A global daily gap-free surface soil moisture dataset from 2002 to 2020 was then generated. The reconstructed values of several sub-regions after manually eliminating the original values were cross-verified with the original data, and this clearly demonstrated the reliability of the reconstruction method with the correlation coefficient (R) ranging between 0.770 and 0.918, the Root Mean Square Error (RMSE) between 0.057 and 0.082 m3/m3, the unbiased Root Mean Square Error (ubRMSE) between 0.053 and 0.081 m3/m3, and Bias between −0.012 and 0.008 m3/m3. The accuracy of the reconstructed surface soil moisture dataset was evaluated using in situ observations of surface soil moisture at 12 sites from the International Soil Moisture Network (ISMN) and the Long-Term Agroecosystem Research (LTAR) network, and the results showed good accuracy in terms of R (0.610), RMSE (0.067 m3/m3), ubRMSE (0.045 m3/m3) and Bias (0.031 m3/m3). Overall, the reconstructed surface soil moisture dataset retained the characteristics of the NN-SM product, such as high accuracy and good spatiotemporal pattern. However, with the advantage of continuous spatiotemporal coverage, it is more suitable for further applications in the analysis of global surface soil moisture trends, land surface hydrological processes, and land-atmosphere energy and water exchanges, etc.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3