The Dependence of Mean Climate State on Shortwave Absorption by Water Vapor

Author:

Kim Hanjun1ORCID,Pendergrass Angeline G.23,Kang Sarah M.1

Affiliation:

1. a School of Urban and Environmental Engineering, UNIST, Ulsan, South Korea

2. b Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, New York

3. c National Center for Atmospheric Research, Boulder, Colorado

Abstract

AbstractState-of-the-art climate models exhibit significant spread in the climatological value of atmospheric shortwave absorption (SWA). This study investigates both the possible causes and climatic impacts of this SWA intermodel spread. The intermodel spread of global-mean SWA largely originates from the intermodel difference in water vapor shortwave absorptivity. Hence, we alter the water vapor shortwave absorptivity in the Community Earth System Model, version 1, with the Community Atmosphere Model, version 4 (CESM1-CAM4). Increasing the water vapor shortwave absorptivity leads to a reduction in global-mean precipitation and a La Niña–like cooling over the tropical Pacific. The global-mean atmospheric energy budget suggests that the precipitation is suppressed as a way to compensate for the increased SWA. The precipitation reduction is driven by the weakened surface winds, stabilized planetary boundary layer, and surface cooling. The La Niña–like cooling over the tropical Pacific is attributed to the zonal asymmetry of climatological evaporative damping efficiency and the low cloud enhancement over the eastern basin. Complementary fixed SSTs simulations suggest that the latter is more fundamental and that it primarily arises from atmospheric processes. Consistent with our experiments, the CMIP5/6 models with a higher global-mean SWA tend to produce tropical Pacific toward a more La Niña–like mean state, highlighting the possible role of water vapor shortwave absorptivity for shaping the mean-state climate patterns.

Funder

National Center for Atmospheric Research

Biological and Environmental Research

National Research Foundation of Korea

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3