Quantifying Changes in the Arctic Shortwave Cloud Radiative Effects

Author:

Kim Doyeon1ORCID,Kang Sarah M.2ORCID,Kim Hanjun3ORCID,Taylor Patrick C.1ORCID

Affiliation:

1. NASA Langley Research Center Hampton VA USA

2. Max Planck Institute for Meteorology Hamburg Germany

3. Department of Earth and Atmospheric Sciences Cornell University Ithaca NY USA

Abstract

AbstractThe shortwave cloud radiative effect (SWCRE) is important for the Arctic surface radiation budget and is a major source of inter‐model spread in simulating Arctic climate. To better understand the individual contributions of various radiative processes to changes in SWCRE, we extend the existing Approximate Partial Radiative Perturbation (APRP) method by adding the absorptivity for the upward beam, considering differences in reflectivity between upward and downward beams, and analyzing the cloud masking effect resulting from changes in surface albedo. Using data from CMIP model experiments, the study decomposes the SWCRE over the Arctic surface and analyzes inter‐model differences in quadrupled CO2 simulations. The study accounts for the influence of surface albedo, cloud amount, and cloud microphysics in the response of SWCRE to Arctic warming. In the sunlit season, CMIP models exhibit a strong, negative SWCRE with a large inter‐model spread. Arctic clouds dampen the surface albedo feedback by reflecting incoming solar radiation and further decrease the shortwave radiation reflected by surface, a fraction of which is scattered back to the surface by clouds. Specifically, this accounts for the majority of the inter‐model spread in SWCRE. In addition, increased (decreased) cloud amount and cloud liquid water reduce (increase) incoming shortwave fluxes at the surface, but they are found to be not critical to the Arctic surface radiation budget and its inter‐model variation. Overall, the extended APRP method offers a useful tool for analyzing the complex interactions between clouds and radiative processes, accurately decomposes the individual SWCRE responses at the Arctic surface.

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3