Understanding the Intermodel Spread in Global-Mean Hydrological Sensitivity*

Author:

Fläschner Dagmar1,Mauritsen Thorsten1,Stevens Bjorn1

Affiliation:

1. Max Planck Institute for Meteorology, Hamburg, Germany

Abstract

Abstract This paper assesses intermodel spread in the slope of global-mean precipitation change ΔP with respect to surface temperature change. The ambiguous estimates in the literature for this slope are reconciled by analyzing four experiments from phase 5 of CMIP (CMIP5) and considering different definitions of the slope. The smallest intermodel spread (a factor of 1.5 between the highest and lowest estimate) is found when using a definition that disentangles temperature-independent precipitation changes (the adjustments) from the slope of the temperature-dependent precipitation response; here this slope is referred to as the hydrological sensitivity parameter η. The estimates herein show that η is more robust than stated in most previous work. The authors demonstrate that adjustments and η estimated from a steplike quadrupling CO2 experiment serve well to predict ΔP in a transient CO2 experiment. The magnitude of η is smaller in the coupled ocean–atmosphere quadrupling CO2 experiment than in the noncoupled atmosphere-only experiment. The offset in magnitude due to coupling suggests that intermodel spread may undersample uncertainty. Also assessed are the relative contribution of η, the surface warming, and the adjustment on the spread in ΔP on different time scales. Intermodel variation of both η and the adjustment govern the spread in ΔP in the years immediately after the abrupt forcing change. In equilibrium, the uncertainty in ΔP is dominated by uncertainty in the equilibrium surface temperature response. A kernel analysis reveals that intermodel spread in η is dominated by intermodel spread in tropical lower tropospheric temperature and humidity changes and cloud changes.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3