The impact of convective overshooting on the thermal structure over the Tibetan Plateau in summer based on TRMM, COSMIC, radiosonde and reanalysis data

Author:

Sun Nan1,Fu Yunfei1,Zhong Lei1,Zhao Chun1,Li Rui1

Affiliation:

1. a School of Earth and Space Sciences, University of Science and Technology of China, Hefei, China

Abstract

AbstractIn this paper, we examine convective overshooting and its effects on the thermal structure of the troposphere and lower stratosphere in the Tibetan Plateau in summer by matching the Tropical Rainfall Measuring Mission (TRMM) with Integrated Global Radiosonde Archive (IGRA), Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), European Centre for Medium-Range Weather Forecasts 5th Reanalysis (ERA-5), the Japanese Meteorological Association 55-year reanalysis (JRA-55) and the National Aeronautics and Space Administration Modern-Era Retrospective analysis for Research and Applications, Versions2 (MERRA-2). It was found that convective overshooting mainly occurs in the central and eastern part of the Tibetan Plateau, and its frequency varies from 0.01 × 10−4 to 0.91 × 10−4. The convective overshooting warms the low middle tropopause and cools the tropopause nearby significantly, which can also makes air get wetter. The tropopause of the convective overshooting is substantially lower than the mean tropopause. Statistical results calculated from the five datasets are generally consistent; however, each dataset has its own strengths and weaknesses. The high spatiotemporal resolution temperature profiles from ERA-5 along with the high vertical resolution temperature profiles from COSMIC can be combined to accurately study convective overshooting in the Tibetan Plateau.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3