Distinct structure, radiative effects, and precipitation characteristics of deep convection systems in the Tibetan Plateau compared to the tropical Indian Ocean

Author:

Zhao Yuxin,Li Jiming,Wen Deyu,Li Yarong,Wang YuanORCID,Huang JianpingORCID

Abstract

Abstract. Using spaceborne lidar and radar observations, this study identifies deep convection systems (DCSs), including deep convection cores (DCCs) and anvils, over the Tibetan Plateau (TP) and tropical Indian Ocean (TO) and finds that DCSs over the TP are less frequent, exhibiting narrower and thinner DCCs and anvils compared to those over the TO. The thinner DCCs over the TP exert weaker radiative cooling effects at the top of atmosphere (TOA) compared to the TO. But, the shortwave TOA cloud radiative effect (CRE) of TP anvils is stronger than that of the TO possibly due to more densely packed cloud tops over the TP. It results in a stronger TOA CRE of DCSs over the TP than that of TO. In particular, the longwave CRE of DCSs over the TP is notably greater at surface and low-level atmosphere due to the distinct lower temperature and less water vapour. The width of DCSs shows a positive correlation with wind shear and atmospheric instability, and the underlying mechanisms are discussed. We also find that the impact of aerosols on cloud top heights and precipitation displays significant discrepancies between the two regions. It is because that the aerosol invigoration effect is less efficient on the TP DCSs, mainly attributed to the significantly colder cloud base. Due to competition between invigoration and direct/semi-direct radiative effects of aerosols, the correlation between precipitation and aerosols over the TP is not obvious. However, precipitation in the TO experiences invigoration followed by suppression with increasing aerosols, due to the dominance of aerosol radiative effects and enhancement entrainment under polluted conditions.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3