Observed Linkage between Tibetan Plateau Soil Moisture and South Asian Summer Precipitation and the Possible Mechanism

Author:

Ullah Waheed1,Guojie Wang1,Gao Zhiqiu2,Tawia Hagan Daniel Fiifi1,Bhatti Asher Samuel1,Zhua Chenxia1

Affiliation:

1. a Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing, China

2. b State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China

Abstract

AbstractUnderstanding the Tibetan Plateau (TP) thermal processes is of utmost significance in changing climate. This study investigates the effect of soil moisture in changing the TP thermal profile and consequently summer precipitation in South Asia (SA). Soil moisture from Special Sensor Microwave Imager (SSM/I) developed from the F-08, F-11, and F-13 fundamental climate data record and atmospheric reanalysis from ERA-Interim, MERRA-2, and NCEP/CFSR during 1988–2008 are used. A generalized linear method that assesses the reciprocal forcing between two connected fields, named the coupled manifold technique (CMT), is applied to TP soil moisture and SA summer precipitation. It is revealed that interannual variations of SA precipitation are significantly (confidence level = 99%) impacted by TP soil moisture and the explained ratio of variance in SA is 0.3–0.4. Composite analysis indicates that SA summer precipitation has positive anomalies in response to dry TP soil moisture in the previous spring and vice versa. For understanding the possible mechanism, thermal processes, relative humidity, wind components, and moisture flux anomalies were calculated for dry and wet TP soil moisture and summer precipitation. The results suggested that TP soil moisture is likely to regulate near-surface energy balance and diabatic heating profile over TP. As a result, the surrounding lower-level westerlies (easterlies) (at 850 hPa) converge (diverge), associated with divergence (convergence) at the upper troposphere (200 hPa). The westerlies (easterlies) are usually moisture-rich (moisture-deficient) and thus cause more (less) precipitation in western (eastern) SA. It is thus suggested that the spring soil moisture may affect the thermal profile of TP, affecting the summer precipitation in SA as a consequence.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Chinesisch-Deutsche Zentrum für Wissenschaftsförderung

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3