Affiliation:
1. a Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), School of Geographical Sciences, Nanjing University of Information Science and Technology, Nanjing, China
2. b State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
Abstract
AbstractUnderstanding the Tibetan Plateau (TP) thermal processes is of utmost significance in changing climate. This study investigates the effect of soil moisture in changing the TP thermal profile and consequently summer precipitation in South Asia (SA). Soil moisture from Special Sensor Microwave Imager (SSM/I) developed from the F-08, F-11, and F-13 fundamental climate data record and atmospheric reanalysis from ERA-Interim, MERRA-2, and NCEP/CFSR during 1988–2008 are used. A generalized linear method that assesses the reciprocal forcing between two connected fields, named the coupled manifold technique (CMT), is applied to TP soil moisture and SA summer precipitation. It is revealed that interannual variations of SA precipitation are significantly (confidence level = 99%) impacted by TP soil moisture and the explained ratio of variance in SA is 0.3–0.4. Composite analysis indicates that SA summer precipitation has positive anomalies in response to dry TP soil moisture in the previous spring and vice versa. For understanding the possible mechanism, thermal processes, relative humidity, wind components, and moisture flux anomalies were calculated for dry and wet TP soil moisture and summer precipitation. The results suggested that TP soil moisture is likely to regulate near-surface energy balance and diabatic heating profile over TP. As a result, the surrounding lower-level westerlies (easterlies) (at 850 hPa) converge (diverge), associated with divergence (convergence) at the upper troposphere (200 hPa). The westerlies (easterlies) are usually moisture-rich (moisture-deficient) and thus cause more (less) precipitation in western (eastern) SA. It is thus suggested that the spring soil moisture may affect the thermal profile of TP, affecting the summer precipitation in SA as a consequence.
Funder
National Key R&D Program of China
National Natural Science Foundation of China
Chinesisch-Deutsche Zentrum für Wissenschaftsförderung
Publisher
American Meteorological Society
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献