Precursory signals of summer precipitation over southern Central Asia: Combined effect of April soil moisture and sea surface temperature

Author:

Wei Xinchen1ORCID,Liu Ge12ORCID,Nan Sulan1ORCID,Zhang Ting12,Mao Xin12,Feng Yuhan1,Zhou Yuwei1

Affiliation:

1. State Key Laboratory of Severe Weather, and Institute of Tibetan Plateau Meteorology, Chinese Academy of Meteorological Sciences Beijing China

2. Collaborative Innovation Centre on Forecast and Evaluation of Meteorological Disasters Nanjing University of Information Science and Technology Nanjing China

Abstract

AbstractThis study investigates the interannual variability of summer precipitation over Central Asia and explores its precursory signals through soil moisture (SM) and sea surface temperature (SST) anomalies. The results reveal that southern Central Asia (SCA) is a crucial SM‐precipitation coupling region where summer precipitation is significantly linked to the preceding April SM in the Turan Plain, between the Caspian Sea and the Tibetan Plateau. The preceding Turan Plain SM (TPSM) anomaly can reflect the ensuing summer SM anomalies in the SCA region due to the persistence of SM. The higher TPSM can stimulate anomalous convective ascent and associated negative geopotential height anomalies over the SCA region, which is favourable for more SCA precipitation (SCAP) during summer. Additionally, Indian and Pacific Ocean SST (IPOS) anomalies can regulate the summer SCAP through ocean and land relay effects. The preceding April can reflect the subsequent summer SST anomalies across the northern Indian Ocean and South China Sea, which trigger a Matsuno‐Gill response and induce anomalous water vapour transport into the SCA region, providing favourable moisture conditions for more SCAP during summer. Apart from such an ocean relay effect, the preceding IPOS can modulate the April TPSM first and then affect the summer SCAP through the land relay effect caused by persistent SM anomalies from April to summer. The combined effect of the preceding TPSM and IPOS on the summer SCAP is more pronounced than the respective effect of either TPSM or IPOS. Incorporating the TPSM signal as a supplementary precursor can enhance the predictive skill of summer SCAP. These findings may provide valuable insights into the reasons and prediction of the variability of summer SCAP.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3