Comparison of Terrestrial Water Storage Changes in the Tibetan Plateau and Its Surroundings Derived from Gravity Recovery and Climate Experiment (GRACE) Solutions of Different Processing Centers

Author:

Xiang Longwei12ORCID,Steffen Holger3ORCID,Wang Hansheng2

Affiliation:

1. School of Geosciences, Yangtze University, Wuhan 430100, China

2. State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430077, China

3. Geodetic Infrastructure, Lantmäteriet, 80182 Gävle, Sweden

Abstract

The GRACE twin satellite gravity mission from 2002 to 2017 has considerably improved investigations on global and regional hydrological changes. However, there are different GRACE solutions and products available which may yield different results for certain regions despite applying the same postprocessing and time span. This is especially the case for the Tibetan Plateau (TP) with its special hydrological conditions represented by localized but strong signals that can overlap or merge with signals inside the plateau, which can falsify the determination of terrestrial water storage (TWS) changes in the TP area. To investigate the effect of GRACE solution selection on inverted TWS changes, we analyze quantitatively the secular and monthly changes for 14 glacier areas and 10 water basins in and around the TP area that have been calculated from 16 different available GRACE solutions. Our analysis provides expectable results. While trend results from different spherical harmonic (SH) GRACE solutions match well, there are significant differences to and between mascon GRACE solutions. This is related to the different processing concepts of mascon solutions and their forced handling in our comparisons. SH solution time series match each other when mass changes are strong with a large amplitude and regular periodicity. However, for regions where small TWS changes are associated with small amplitudes, trends, and/or unstable signal periods, SH solutions can also yield different results. Such behavior is known from a time series analysis. Interestingly though, we find that the COST-G and ITSG SH GRACE solutions are closest to the average of all solutions. Therefore, these solutions appear to be preferable for TWS investigations in regions with highly variable hydrological conditions, such as in the Tibetan Plateau and its surroundings. This also indicates that combined solutions such as COST-G provide a promising pathway for an improved TWS analysis, which should be further elaborated.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3