Abstract
Abstract
The decadal Pacific–Japan (PJ) pattern, the dominant decadal mode of summer vorticity anomaly over East Asia, is characterized as a meridionally arranged wave pattern with one anomalous cyclone located over Taiwan, and two anomalous anticyclones around the South China Sea (SCS) and the Bohai Sea. This pattern can cause wetter and colder conditions in Southeast China and dryer and warmer conditions in North China. The local SST–rainfall relationship reveals that the Maritime Continent (MC) SST can act as an engine to regulate and maintain the decadal PJ pattern. Driven by enhanced convection over the MC, anomalous divergent flows in the upper troposphere move northward, cross the equator, and then converge and subside over the SCS. The SCS low-level divergence, maintained by this meridional overturning circulation under the Sverdrup vorticity balance, further works as a Rossby wave source and excites the decadal PJ pattern pointing straight northward. The transhemispheric impacts of the MC SST are well reproduced by both the atmospheric general circulation model and the dry linear baroclinic model, with the former emphasizing the MC’s original forcing role and the latter highlighting the SCS anticyclone’s role in relaying and amplifying those climatic impacts. Thus, our results indicate that SST variations over the MC region can be viewed as a potential source of East Asian decadal climate predictability.
Funder
national natural science foundation of china
national key r&d program of china
the strategic priority research program of the chinese academy of sciences
the key special project for introduced talents team of southern marine science and engineering guangdong laboratory
the innovation academy of south china sea ecology and environmental engineering, the chinese academy of sciences
the leading talents of guangdong province program
Publisher
American Meteorological Society
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献