Suppressive MJO in April 2014 Downgraded the 2014/15 El Niño

Author:

Wang Jie1,Chen Dake213,Lian Tao213,Li Baosheng2,Han Xiang42,Liu Ting23

Affiliation:

1. a School of Oceanography, Shanghai Jiao Tong University, Shanghai, China

2. b State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou, China

3. c Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China

4. d Ocean College, Zhejiang University, Zhoushan, China

Abstract

Abstract The sudden halting of the extreme 2014/15 El Niño expected by many was attributed to the absence of westerly wind bursts (WWBs) in late spring and early summer 2014 in previous works, yet the cause of the lack of WWBs was overlooked. Using the ERA5 reanalysis and IBTrACS dataset, as well as a set of coupled model experiments, we showed that the absence of WWBs in May efficiently downgraded the intensity of the 2014/15 El Niño from a moderate to a weak event and was closely associated with a strong suppressive MJO originating from the central tropical Indian Ocean in mid-April 2014. The suppressive MJO underwent two pathways once passing through the Maritime Continent in early May. Along the eastward pathway, the strong suppressive MJO prevailed over the western–central equatorial Pacific, directly prohibiting the occurrence of WWBs at the equator via inducing equatorial easterly anomaly. Along the northeastward pathway, the downward motions with relative dry air and strong vertical zonal wind shear associated with the suppressive MJO suppressed the activity of the tropical cyclones in the northwestern tropical Pacific, another source of WWBs. Our results indicate that the contributions of MJO to the development of El Niño from both the direct and indirect ways should be taken into account for improving El Niño prediction.

Funder

National Natural Science Foundation of China

Key Research and Development Program of Zhejiang Province

Publisher

American Meteorological Society

Reference70 articles.

1. Interannual variability in a tropical atmosphere–ocean model: Influence of the basic state, ocean geometry and nonlinearity;Battisti, D. S.,1989

2. An improved coupled model for ENSO prediction and implications for ocean initialization. Part I: The ocean data assimilation system;Behringer, D. W.,1998

3. Climate assessment for 1999;Bell, G. D.,2000

4. Atmospheric teleconnections from the equatorial Pacific;Bjerknes, J.,1969

5. The impact of climate change on the western Pacific subtropical high and the related ozone pollution in Shanghai, China;Chang, L.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3