Interannual Fluctuations and Their Low-Frequency Modulation of Summertime Heavy Daily Rainfall Potential in Western Japan

Author:

Mochizuki Takashi1ORCID

Affiliation:

1. Department of Earth and Planetary Sciences, Kyushu University, Fukuoka 819-0395, Japan

Abstract

Heavy rainfall under the conditions of the changing climate has recently garnered considerable attention. The statistics on heavy daily rainfall offer vital information for assessing present and future extreme events and for clarifying the impacts of global climate variability and change, working to form a favorable background. By analyzing a set of large-ensemble simulations using a global atmospheric model, this study demonstrated that two different physical processes in global climate variability control the interannual fluctuations in the 99th- and 90th-percentile values of summertime daily rainfall (i.e., the potential amounts) on Kyushu Island in western Japan. The 90th-percentile values were closely related to large-scale horizontal moisture transport anomalies due to changes in the subtropical high in the northwestern Pacific, which was usually accompanied by basin-scale warming in the Indian Ocean subsequent to the wintertime El Niño events. The contributions of the sea surface temperatures over the northern Indian Ocean and the eastern tropical Pacific Ocean showed low-frequency modulations, mainly due to the influences of the global warming tendency and the interdecadal variability in the climate system, respectively. In contrast, tropical cyclone activity played a major role in changing the 99th-percentile value. The potentials of both the tropical cyclone intensity and the existence density fluctuated, largely owing to the summertime sea surface temperature over the tropical Pacific, which can be modulated by the El Niño diversity on interdecadal timescales.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3