Seasonal-to-Interannual Prediction Skills of Near-Surface Air Temperature in the CMIP5 Decadal Hindcast Experiments

Author:

Choi Jung1,Son Seok-Woo1,Ham Yoo-Geun2,Lee June-Yi3,Kim Hye-Mi4

Affiliation:

1. School of Earth and Environmental Sciences, Seoul National University, Seoul, South Korea

2. Department of Oceanography, Chonnam National University, Gwangju, South Korea

3. Department of Atmospheric Sciences, Division of Earth Environmental System, Pusan National University, Busan, South Korea

4. School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, New York

Abstract

Abstract This study explores the seasonal-to-interannual near-surface air temperature (TAS) prediction skills of state-of-the-art climate models that were involved in phase 5 of the Coupled Model Intercomparison Project (CMIP5) decadal hindcast/forecast experiments. The experiments are initialized in either November or January of each year and integrated for up to 10 years, providing a good opportunity for filling the gap between seasonal and decadal climate predictions. The long-lead multimodel ensemble (MME) prediction is evaluated for 1981–2007 in terms of the anomaly correlation coefficient (ACC) and mean-squared skill score (MSSS), which combines ACC and conditional bias, with respect to observations and reanalysis data, paying particular attention to the seasonal dependency of the global-mean and equatorial Pacific TAS predictions. The MME shows statistically significant ACCs and MSSSs for the annual global-mean TAS for up to two years, mainly because of long-term global warming trends. When the long-term trends are removed, the prediction skill is reduced. The prediction skills are generally lower in boreal winters than in other seasons regardless of lead times. This lack of winter prediction skill is attributed to the failure of capturing the long-term trend and interannual variability of TAS over high-latitude continents in the Northern Hemisphere. In contrast to global-mean TAS, regional TAS over the equatorial Pacific is predicted well in winter. This is mainly due to a successful prediction of the El Niño–Southern Oscillation (ENSO). In most models, the wintertime ENSO index is reasonably well predicted for at least one year in advance. The sensitivity of the prediction skill to the initialized month and method is also discussed.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3