Upscale Energy Transfer by the Vortical Mode and Internal Waves

Author:

Brunner-Suzuki Anne-Marie E. G.1,Sundermeyer Miles A.1,Lelong M.-Pascale2

Affiliation:

1. University of Massachusetts, Dartmouth, Massachusetts

2. NorthWest Research Associates, Redmond, Washington

Abstract

Abstract Diapycnal mixing in the ocean is sporadic yet ubiquitous, leading to patches of mixing on a variety of scales. The adjustment of such mixed patches can lead to the formation of vortices and other small-scale geostrophic motions, which are thought to enhance lateral diffusivity. If vortices are densely populated, they can interact and merge, and upscale energy transfer can occur. Vortex interaction can also be modified by internal waves, thus impacting upscale transfer. Numerical experiments were used to study the effect of a large-scale near-inertial internal wave on a field of submesoscale vortices. While one might expect a vertical shear to limit the vertical scale of merging vortices, it was found that internal wave shear did not disrupt upscale energy transfer. Rather, under certain conditions, it enhanced upscale transfer by enhancing vortex–vortex interaction. If vortices were so densely populated that they interacted even in the absence of a wave, adding a forced large-scale wave enhanced the existing upscale transfer. Results further suggest that continuous forcing by the main driving mechanism (either vortices or internal waves) is necessary to maintain such upscale transfer. These findings could help to improve understanding of the direction of energy transfer in submesoscale oceanic processes.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3