Nonlinear Cascades of Surface Oceanic Geostrophic Kinetic Energy in the Frequency Domain*

Author:

Arbic Brian K.1,Scott Robert B.2,Flierl Glenn R.3,Morten Andrew J.4,Richman James G.5,Shriver Jay F.5

Affiliation:

1. Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, Michigan

2. Institute for Geophysics, Jackson School of Geosciences, The University of Texas at Austin, Austin, Texas, and Department de Physique et LPO, Université de Bretagne Occidental, CNRS, Brest, France

3. Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts

4. Department of Physics, University of Michigan, Ann Arbor, Michigan

5. Oceanography Division, Naval Research Laboratory, Stennis Space Center, Mississippi

Abstract

Abstract Motivated by the ubiquity of time series in oceanic data, the relative lack of studies of geostrophic turbulence in the frequency domain, and the interest in quantifying the contributions of intrinsic nonlinearities to oceanic frequency spectra, this paper examines the spectra and spectral fluxes of surface oceanic geostrophic flows in the frequency domain. Spectra and spectral fluxes are computed from idealized two-layer quasigeostrophic (QG) turbulence models and realistic ocean general circulation models, as well as from gridded satellite altimeter data. The frequency spectra of the variance of streamfunction (akin to sea surface height) and of geostrophic velocity are qualitatively similar in all of these, with substantial variance extending out to low frequencies. The spectral flux Π(ω) of kinetic energy in the frequency ω domain for the QG model documents a tendency for nonlinearity to drive energy toward longer periods, in like manner to the inverse cascade toward larger length scales documented in calculations of the spectral flux Π(k) in the wavenumber k domain. Computations of Π(ω) in the realistic model also display an “inverse temporal cascade.” In satellite altimeter data, some regions are dominated by an inverse temporal cascade, whereas others exhibit a forward temporal cascade. However, calculations performed with temporally and/or spatially filtered output from the models demonstrate that Π(ω) values are highly susceptible to the smoothing inherent in the construction of gridded altimeter products. Therefore, at present it is difficult to say whether the forward temporal cascades seen in some regions in altimeter data represent physics that is missing in the models studied here or merely sampling artifacts.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3