The Skeleton of the Mediterranean Sea

Author:

Rubino Angelo1,Pierini Stefano2ORCID,Rubinetti Sara13ORCID,Gnesotto Michele1ORCID,Zanchettin Davide1ORCID

Affiliation:

1. Department of Environmental Sciences, Informatics and Statistics, University Ca ’Foscari of Venice, Via Torino 155, 30172 Mestre, Italy

2. Department of Science and Technology, Parthenope University of Naples, 80143 Naples, Italy

3. Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, 25992 List, Germany

Abstract

The Mediterranean Sea is of great and manifold relevance for global oceanic circulation and climate: Mediterranean waters profoundly affect the salinity of the North Atlantic Ocean and hence the global ocean circulation. Ocean motions are forced fundamentally by the atmosphere. However, direct atmospheric forcing explains just a part of the observed Mediterranean circulation, for example, the former is not able to account for the observed north-south inclination of the sea level, one of the most prominent and persistent features of Mediterranean oceanography. This implies that a significant part of this circulation feature is caused by mechanisms that are all internal, “intrinsic” to the ocean. Yet, no effort has been made so far to disentangle intrinsic oceanic phenomena from atmospherically forced ones in the Mediterranean Sea. Here, we start filling this gap of knowledge. We demonstrate that a conspicuous part of the observed Mediterranean mean state and variability belongs to a skeleton captured for the first time by a multi-centennial ocean simulation without atmospheric forcing. This study paves the way to the identification and comprehension of further observed mean patterns and low-frequency fluctuations in the Mediterranean Sea as the result of intrinsic oceanic processes rather than by a direct effect of the atmospheric forcing and could be extended to other basins where geometry and hydrological structure significantly contribute to shaping the local dynamics.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3