Spatio‐Temporal Coarse‐Graining Decomposition of the Global Ocean Geostrophic Kinetic Energy

Author:

Buzzicotti M.1ORCID,Storer B. A.2ORCID,Khatri H.3ORCID,Griffies S. M.45ORCID,Aluie H.26ORCID

Affiliation:

1. Department of Physics University of Rome Tor Vergata and INFN Rome Italy

2. Department of Mechanical Engineering University of Rochester Rochester NY USA

3. Department of Earth, Ocean and Ecological Sciences University of Liverpool Liverpool UK

4. NOAA Geophysical Fluid Dynamics Laboratory Princeton NJ USA

5. Princeton University Atmospheric and Oceanic Sciences Program Princeton NJ USA

6. Laboratory for Laser Energetics University of Rochester Rochester NY USA

Abstract

AbstractWe expand on a recent determination of the first global energy spectrum of the ocean's surface geostrophic circulation (Storer et al., 2022, https://doi.org/10.1038/s41467-022-33031-3) using a coarse‐graining (CG) method. We compare spectra from CG to those from spherical harmonics by treating land in a manner consistent with the boundary conditions. While the two methods yield qualitatively consistent domain‐averaged results, spherical harmonics spectra are too noisy at gyre‐scales (>1,000 km). More importantly, spherical harmonics are inherently global and cannot provide local information connecting scales with currents geographically. CG shows that the extra‐tropics mesoscales (100–500 km) have a root‐mean‐square (rms) velocity of ∼15 cm/s, which increases to ∼30–40 cm/s locally in the Gulf Stream and Kuroshio and to ∼16–28 cm/s in the ACC. There is notable hemispheric asymmetry in mesoscale energy‐per‐area, which is higher in the north due to continental boundaries. We estimate that ≈25%–50% of total geostrophic energy is at scales smaller than 100 km, and is un(der)‐resolved by pre‐SWOT satellite products. Spectra of the time‐mean circulation show that most of its energy (up to 70%) resides in stationary eddies with characteristic scales smaller than (<500 km). This highlights the preponderance of “standing” small‐scale structures in the global ocean due to the temporally coherent forcing by boundaries. By coarse‐graining in space and time, we compute the first spatio‐temporal global spectrum of geostrophic circulation from AVISO and NEMO. These spectra show that every length‐scale evolves over a wide range of time‐scales with a consistent peak at ≈200 km and ≈2–3 weeks.

Publisher

American Geophysical Union (AGU)

Subject

General Earth and Planetary Sciences,Environmental Chemistry,Global and Planetary Change

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3