Three Regimes of Internal Gravity Wave–Stable Vortex Interaction Classified by a Nondimensional Parameter δ: Scattering, Wheel-Trapping, and Spiral-Trapping with Vortex Deformation

Author:

Ito Kaoru1,Nakamura Tomohiro1

Affiliation:

1. a Pan-Okhotsk Research Center, Institute of Low Temperature Science, Hokkaido University, Sapporo, Japan

Abstract

Abstract The internal wave–vortex interaction was investigated for a broad parameter range except near inertial waves, by 1) scaling, 2) numerical experiments, and 3) the estimation of possible occurrences. By scaling, we identified a nondimensional parameter, δ = (V/c)[1/(kR)], where V is the vortex flow speed, R is the radius, c is the incident wave phase speed, and k is the horizontal wavenumber. As δ appears in all terms related to the interaction, it is important in the classification of the wave–vortex interaction. Numerical experiments were conducted on internal waves incident on a stable barotropic vortex with a parameter range of δ = [0.001, 1.7], which is much broader than that used in previous studies (δ ≪ 1). We found new phenomena for δ > 0.15, in addition to previously known scattering for δ ≤ 0.15 (scattering regime). For 0.15 < δ ≤ 0.4, part of the incident internal wave is trapped in a vortex, forming a wheel-like shape maintaining a superinertial frequency (wheel-trapping regime). When δ > 0.4, incident waves are trapped, but with a spiral shape (spiral-trapping regime). Spiral-shaped trapped waves release momentum by wave breaking, which deforms the vortex into a zigzag shape in the vertical direction. Vortex deformation produces vertical shear, which rapidly increases the vertical wavenumber of the incident wave. The distribution of δ in the Pacific Ocean was estimated using a high-resolution (1/30°) ocean general circulation model output. We found the occurrences of all three regimes. The scattering and wheel-trapping regimes are distributed broadly and varied seasonally, thus affecting mixing variability. Significance Statement Oceanic internal waves constitute the fundamental forcing of overturning and material circulation, because internal waves eventually break and cause vertical mixing. Interactions between internal waves and vortices affect wave properties and, therefore, mixing. However, as far as we are aware, all previous studies have focused on large weak vortices relative to waves. Here, we investigated such interactions for a much larger parameter space and identified two new regimes, in which vertical mixing is caused by newly found internal wave trapping and vortex deformation processes. We identified a nondimensional parameter that classifies the regimes and estimated their spatiotemporal distribution. These results suggest new energy routes from internal waves to turbulence and are applicable to other types of waves and vortices.

Funder

Japan Society for the Promotion of Science

ILTS

JHPCN

Hokkaido University

Publisher

American Meteorological Society

Subject

Oceanography

Reference79 articles.

1. Redistribution of energy available for ocean mixing by long-range propagation of internal waves;Alford, M. H.,2003

2. Indirect evidence for substantial damping of low-mode internal tides in the open ocean;Ansong, J. K.,2015

3. Concurrent simulation of the eddying general circulation and tides in a global ocean model;Arbic, B. K.,2010

4. Global modeling of internal tides within an eddying ocean general circulation model;Arbic, B. K.,2012

5. On the irreversibility of internal-wave dynamics due to wave trapping by mean flow inhomogeneities. Part 1. Local analysis;Badulin, S. I.,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3