A New Algorithm for Estimating Low Cloud-Base Height in Southwest China

Author:

Wang Rongjiang1,Zhou Renjun1,Yang Shuping1,Li Rui1,Pu Jiangping2,Liu Kaiyu3,Deng Yi4

Affiliation:

1. a School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, China

2. b Key Laboratory for Cloud Physics of China Meteorological Administration, Beijing, China

3. c Guizhou Air Traffic Management Bureau of CAAC, Guiyang, Guizhou, China

4. d School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia

Abstract

Abstract The prevalence of low clouds significantly affects flight safety in Southwest China. However, relevant cloud parameters, especially low cloud-base height (LCBH), lack accurate forecasts. Based on the hourly atmospheric vertical profiles of ERA5 from 2008 to 2019, we developed a new algorithm for estimating LCBH by combining relative humidity (RH) threshold methods with convective condensation level (CCL) (RHs-CCL). To evaluate the performance of RHs-CCL, we use it to estimate the hourly LCBH of airports in Southwest China and compare the results with those based on the ground-based observations and the ERA5 CBH data. Using the observations as a ground truth, we compare the RHs-CCL algorithm with several existing algorithms with the following findings: 1) The correlation coefficient between RHs-CCL and observations reaches 0.5 on average, and the error of RHs-CCL is smaller than those of existing algorithms, with the minimum mean absolute error and root-mean-square error at the four airports studies being able to reach 243 and 321 m. 2) The bias score of RHs-CCL is 0.97 on average, and low clouds classification utilizing RHs-CCL attains the highest accuracy, up to 86%. 3) The errors of ERA5 CBH are the largest when compared with the others. 4) By implementing convective cloud occurrence condition and CCL, RHs-CCL has better applicability in regions of enhanced convective activity. These results suggest the potential of RHs-CCL as an algorithm moving forward for improvement of the LCBH estimates based upon high-resolution reanalysis products and for better predictions of the LCBH utilizing outputs from numerical weather prediction models. Significance Statement The new algorithm developed in this study can accurately estimate low cloud-base heights from vertical profiles of atmospheric variables. It provides us a much more computationally efficient approach for predicting low cloud-base height relative to running cloud models, which is critical for weather forecasting at locations lacking computational resources and/or cloud modeling capability. In areas such as Southwest China, low clouds are very common, and they pose major threats to aviation safety. The new algorithm has been successfully integrated into the daily operation at Guiyang Airport in Southwest China and demonstrated excellent skills in estimating cloud-base heights. The implementation of the algorithm in aviation forecasting over a broader region is on the horizon.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3