Mapping an Observation-Based Global Solar Irradiance Climatology across the Conterminous United States

Author:

Rupp David E.1ORCID,Daly Christopher2,Doggett Matthew K.2,Smith Joseph I.2,Steinberg Ben2

Affiliation:

1. a Oregon Climate Change Research Institute, College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, Corvallis, Oregon

2. b PRISM Climate Group, Northwest Alliance for Computational Science and Engineering, College of Engineering, Oregon State University, Corvallis, Oregon

Abstract

Abstract The exponential growth in solar radiation measuring stations across the conterminous United States permits the generation of gridded solar irradiance data that capture the spatiotemporal variability of solar irradiance far more accurately than was previously possible from ground-based observations. Taking advantage of these observations, we generated a 30-yr climatology (1991–2020) of mean monthly global irradiance at a resolution of 30 arc s (∼800 m) on both a horizontal surface and a sloped ground surface. This paper describes the methods used to generate the gridded data, which include extensive quality control of station data, spatial interpolation of effective cloud transmittance using the “PRISM” method, and simulation of the effects of elevation, shading, and reflection from nearby terrain on solar irradiance. A comparison of the new dataset with several other solar radiation products reveals some spatial features in solar radiation that are either lacking or underresolved in some or all of the other datasets. Examples of these features include strong gradients near foggy coastlines and along mountain ranges where there is persistent orographically driven cloud formation. The workflow developed to create the long-term means will be used as a template for generating time series of monthly and daily solar radiation grids up to the present.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference59 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3