Monitoring the Spatial Distribution of Cover Crops and Tillage Practices Using Machine Learning and Environmental Drivers across Eastern South Dakota

Author:

Jain KhushbooORCID,John Ranjeet,Torbick Nathan,Kolluru Venkatesh,Saraf Sakshi,Chandel Abhinav,Henebry Geoffrey M.,Jarchow Meghann

Abstract

AbstractThe adoption of conservation agriculture methods, such as conservation tillage and cover cropping, is a viable alternative to conventional farming practices for improving soil health and reducing soil carbon losses. Despite their significance in mitigating climate change, there are very few studies that have assessed the overall spatial distribution of cover crops and tillage practices based on the farm’s pedoclimatic and topographic characteristics. Hence, the primary objective of this study was to use multiple satellite-derived indices and environmental drivers to infer the level of tillage intensity and identify the presence of cover crops in eastern South Dakota (SD). We used a machine learning classifier trained with in situ field samples and environmental drivers acquired from different remote sensing datasets for 2022 and 2023 to map the conservation agriculture practices. Our classification accuracies (>80%) indicate that the employed satellite spectral indices and environmental variables could successfully detect the presence of cover crops and the tillage intensity in the study region. Our analysis revealed that 4% of the corn (Zea mays) and soybean (Glycine max) fields in eastern SD had a cover crop during either the fall of 2022 or the spring of 2023. We also found that environmental factors, specifically seasonal precipitation, growing degree days, and surface texture, significantly impacted the use of conservation practices. The methods developed through this research may provide a viable means for tracking and documenting farmers’ agricultural management techniques. Our study contributes to developing a measurement, reporting, and verification (MRV) solution that could help used to monitor various climate-smart agricultural practices.

Funder

South Dakota Board of Regents

National science foundation

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3