Comparing Approximated Heat Stress Measures Across the United States

Author:

Ahn Yoonjung12ORCID,Tuholske Cascade34,Parks Robbie M.5

Affiliation:

1. Geography & Atmospheric Science Department University of Kansas Lawrence KS USA

2. Institute of Behavioral Science University of Colorado Boulder Boulder CO USA

3. Department of Earth Sciences Montana State University Bozeman MT USA

4. GeoSpatial Core Facility Montana State University Bozeman MT USA

5. Department of Environmental Health Sciences Mailman School of Public Health Columbia University New York NY USA

Abstract

AbstractClimate change is escalating the threat of heat stress to global public health, with the majority of humans today facing increasingly severe and prolonged heat waves. Accurate weather data reflecting the complexity of measuring heat stress is crucial for reducing the impact of extreme heat on health worldwide. Previous studies have employed Heat Index (HI) and Wet Bulb Globe Temperature (WBGT) metrics to understand extreme heat exposure, forming the basis for heat stress guidelines. However, systematic comparisons of meteorological and climate data sets used for these metrics and the related parameters, like air temperature, humidity, wind speed, and solar radiation crucial for human thermoregulation, are lacking. We compared three heat measures (HImax, WBGTBernard, and WBGTLiljegren) approximated from gridded weather data sets (ERA5‐Land, PRISM, Daymet) with ground‐based data, revealing strong agreement from HI and WBGTBernard (R2 0.76–0.95, RMSE 1.69–6.64°C). Discrepancies varied by Köppen‐Geiger climates (e.g., Adjusted R2 HImax 0.88–0.95, WBGTBernard 0.79–0.97, and WBGTLiljegren 0.80–0.96), and metrological input variables (Adjusted R2 Tmax 0.86–0.94, Tmin 0.91–0.94, Wind 0.33, Solarmax 0.38, Solaravg 0.38, relative humidity 0.51–0.74). Gridded data sets can offer reliable heat exposure assessment, but further research and local networks are vital to reduce measurement errors to fully enhance our understanding of how heat stress measures link to health outcomes.

Publisher

American Geophysical Union (AGU)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Public Health, Environmental and Occupational Health,Pollution,Waste Management and Disposal,Water Science and Technology,Epidemiology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3