Climatological Estimates of Daily Local Nontornadic Severe Thunderstorm Probability for the United States

Author:

Doswell Charles A.1,Brooks Harold E.2,Kay Michael P.3

Affiliation:

1. Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

2. NOAA/National Severe Storms Laboratory, Norman, Oklahoma

3. Cooperative Institute for Mesoscale Meteorological Studies and NOAA/Storm Prediction Center, Norman, Oklahoma

Abstract

Abstract The probability of nontornadic severe weather event reports near any location in the United States for any day of the year has been estimated. Gaussian smoothers in space and time have been applied to the observed record of severe thunderstorm occurrence from 1980 to 1994 to produce daily maps and annual cycles at any point. Many aspects of this climatology have been identified in previous work, but the method allows for the consideration of the record in several new ways. A review of the raw data, broken down in various ways, reveals that numerous nonmeteorological artifacts are present in the raw data. These are predominantly associated with the marginal nontornadic severe thunderstorm events, including an enormous growth in the number of severe weather reports since the mid-1950s. Much of this growth may be associated with a drive to improve warning verification scores. The smoothed spatial and temporal distributions of the probability of nontornadic severe thunderstorm events are presented in several ways. The distribution of significant nontornadic severe thunderstorm reports (wind speeds ≥ 65 kt and/or hailstone diameters ≥ 2 in.) is consistent with the hypothesis that supercells are responsible for the majority of such reports.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference23 articles.

1. VIL density as a hail indicator.;Amburn;Wea. Forecasting,1997

2. The Oklahoma Mesonet: A technical overview.;Brock;J. Atmos. Oceanic Technol.,1995

3. Brooks, H E., and J P.Craven, 2002: A database of proximity soundings for significant severe thunderstorms, 1957–1993. Preprints, 21st Conf. on Severe Local Storms, San Antonio, TX, Amer. Meteor. Soc., 639–642.

4. Climatological estimates of local daily tornado probability for the United States.;Brooks;Wea. Forecasting,2003

5. Concannon, P R., H E.Brooks, and C A.DoswellIII, 2000: Climatological risk of strong and violent tornadoes in the United States. Preprints, Second Symp. on Environmental Applications, Long Beach, CA, Amer. Meteor. Soc., 212–219.

Cited by 178 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3