Hailfall in a Possible Future Climate Using a Pseudo–Global Warming Approach: Hail Characteristics and Mesoscale Influences

Author:

Mallinson Holly1,Lasher-Trapp Sonia1,Trapp Jeff1,Woods Matthew1,Orendorf Sophie1

Affiliation:

1. a University of Illinois Urbana–Champaign, Urbana, Illinois

Abstract

Abstract Severe convective storms (SCS) and their associated hazards present significant societal risk. Understanding of how these hazards, such as hailfall, may change due to anthropogenic climate change is in its infancy. Previous methods used to investigate possible changes in SCS and their hail used climate model output and were limited by their coarse spatiotemporal resolution and less detailed representations of hail. This study instead uses an event-level pseudo–global warming (PGW) approach to simulate seven different hailstorms in their historical environments, and again in five different end-of-century PGW environments obtained from the worst-case scenario increases in CO2 of five different CMIP5 members. Changes in large-scale environmental parameters were generally found to be consistent with prior studies, showing mostly increases in CAPE, CIN, and precipitable water, with minor changes in vertical wind shear. Nearly all simulated events had moderately stronger updrafts in the PGW environments. Only cold-season events showed an increase in hail sizes both within the storms and at the surface, whereas warm-season events exhibited a decrease in hail sizes at the surface and aloft. Changes in the event-total hailfall area at the ground also showed a seasonal trend, with increases in cold-season events and decreases in warm-season events. Melting depths increased for all PGW environments, and these increases likely contributed to greater rainfall area for warm-season events, where an increase in smaller hail aloft would be more prone to melting. The differences in PGW simulation hail sizes in cold-season and warm-season events found here are likely related to differences in microphysical processes and warrant future study. Significance Statement It is uncertain how severe thunderstorm hazards (such as hail, tornadoes, and damaging winds) may change due to human-induced climate change. Given the significant societal risk these hazards pose, this study seeks to better understand how hailstorms may change in the future. Simulated end-of-century storms in winter months showed larger hail sizes and a larger area of event-total hailfall than in the historical simulations, whereas simulated future storms in spring and summer months showed smaller hail sizes and a reduction in the area where hail fell. An analysis of traditional environmental and storm-scale properties did not reveal a clear distinction between cold-season and warm-season hailstorms, suggesting that changes in small-scale precipitation processes may be responsible.

Funder

National Science Foundation

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference93 articles.

1. The characteristics of United States hail reports: 1955–2014;Allen, J. T.,2015

2. An extreme value model for U.S. hail size;Allen, J. T.,2017

3. Understanding hail in the Earth system;Allen, J. T.,2020

4. The future of supercells in the United States;Ashley, W. S.,2023

5. Creating high-resolution hail datasets using social media and post-storm ground surveys;Blair, S. F.,2012

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hailstone size dichotomy in a warming climate;npj Climate and Atmospheric Science;2024-08-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3