Influence of Eddy Momentum Fluxes on the Mean Flow of the Kuroshio Extension in a 1/10° Ocean General Circulation Model

Author:

Aoki Kunihiro1,Kubokawa Atsushi1,Furue Ryo2,Sasaki Hideharu2

Affiliation:

1. Faculty of Environmental Earth Science, Hokkaido University, Sapporo, Japan

2. Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Abstract

AbstractThis study explores the role of the momentum flux divergence due to mesoscale eddies for the maintenance of the Kuroshio Extension (KE) jet. For that purpose, the zonal momentum budget in a high-resolution ocean general circulation model is examined on the basis of the temporal residual mean framework. The momentum budget analysis is performed for two control volumes: the upstream region of the KE jet flanked by the robust recirculations (33°–38°N and 142.2°–149.4°E) and the downstream region to the east (33°–38°N and 149.4°–160.0°E), both fully covering the meridional width of the KE jet. In both regions the KE jet decelerates to the east, which can be well accounted for by sum of zonal Reynolds stress and Coriolis force on mean ageostrophic flow; the former tends to decelerate the KE jet and the latter to accelerate it in the upstream region, respectively, but these effects are switched in the downstream region. The mean ageostrophic Coriolis force is partially balanced by the horizontal gradient of the eddy kinetic energy, which is the isotropic component of the Reynolds stress. The difference between these terms, that is, net ageostrophic Coriolis force, leads to the final deceleration of the KE jet in the downstream region, overwhelming the acceleration tendency of the anisotropic Reynolds stress. The authors also reinterpret the downstream decay process of an eastward jet in a previous quasigeostrophic experiment in terms of momentum and show that the same features as described above are also likely to be included in that experiment.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3