Modified View of Energy Budget Diagram and Its Application to the Kuroshio Extension Region

Author:

Matsuta Takuro1,Masumoto Yukio12

Affiliation:

1. a Department of Earth and Planetary Science, Graduate School of Science, The University of Tokyo, Tokyo, Japan

2. b Application Laboratory, Japan Agency for Marine-Earth Science and Technology, Yokohama, Japan

Abstract

AbstractThe nonlocality of eddy–mean flow interactions, which appears explicitly in the modified Lorentz diagram as a form of the interaction energy, and its link to other estimation methods are revisited, and a new formulation for the potential enstrophy is proposed. The application of these methods to the Kuroshio Extension region suggests that the combined use of energy analysis with other methods, including the potential enstrophy diagram, provides more comprehensive understandings for the eddy–mean flow interactions in the limited region. It is shown that the interaction energy is transported from the nearshore and upstream regions to the downstream region in the form of the interaction energy flux, causing acceleration of the Kuroshio Extension jet in the downstream region. The potential enstrophy diagram indicates that the eddy field decelerates (accelerates) the jet in the nearshore (downstream) region, which is a consistent result with the energy analysis. It turns out that the interaction potential enstrophy flux is radiated from a region of the eddy kinetic energy maximum toward the upstream region, which is the opposite direction from the interaction energy flux. The interaction potential enstrophy flux that originated from this eddy kinetic energy maximum region also convergences near the center of the northern recirculation gyre of the Kuroshio Extension region and tends to stabilize the structures of the recirculation gyre. Together with the energy analysis that indicates the eddy field accelerates the northeastern part of the recirculation gyre through the local interactions, the present analyses support the arguments on the eddy-driven northern recirculation gyre.

Publisher

American Meteorological Society

Subject

Oceanography

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3