A Two-Season Impact Study of Four Satellite Data Types and Rawinsonde Data in the NCEP Global Data Assimilation System

Author:

Zapotocny Tom H.1,Jung James A.2,Le Marshall John F.3,Treadon Russ E.4

Affiliation:

1. Cooperative Institute for Meteorological Satellite Studies, and Space Science and Engineering Center, University of Wisconsin—Madison, Madison, Wisconsin, and Joint Center for Satellite Data Assimilation, Camp Springs, Maryland

2. Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin—Madison, Madison, Wisconsin, and Joint Center for Satellite Data Assimilation, Camp Springs, Maryland

3. University of Maryland, College Park, College Park, and Joint Center for Satellite Data Assimilation, Camp Springs, Maryland

4. National Centers for Environmental Prediction, and Joint Center for Satellite Data Assimilation, Camp Springs, Maryland

Abstract

Abstract Extended-length observing system experiments (OSEs) during two seasons are used to quantify the contributions made to forecast quality by conventional rawinsonde data and four types of remotely sensed satellite data. The impact is measured by comparing the analysis and forecast results from an assimilation–forecast system using all data types with those excluding a particular observing system. The impact of the particular observing system is assessed by comparing the forecast results over extended periods. For these observing system experiments, forecast results are compared through 168 h for periods covering more than a month during both the summer and winter seasons of each hemisphere. The assimilation–forecast system used for these experiments is the National Centers for Environmental Prediction (NCEP) Global Data Assimilation System (GDAS) and the Global Forecast System (GFS). The case studies chosen consist of periods during January–February 2003 and August–September 2003. During these periods, a T254L64 layer version of NCEP’s global spectral model was used. The control run utilized all data types routinely assimilated in the GDAS. The experimental runs individually denied data from the Advanced Microwave Sounding Unit (AMSU), the High-Resolution Infrared Radiation Sounder (HIRS), geostationary satellite atmospheric motion vectors (GEO winds), in situ rawinsondes (raobs), and surface winds derived from the Quick Scatterometer (QuikSCAT). Differences between the control and denial experiment forecasts are accumulated over the two 45-day periods and are analyzed to demonstrate the impact of these data types. Anomaly correlations (ACs), forecast impacts (FIs), and hurricane track forecasts are evaluated for all experimental runs during both seasons. The anomaly correlations used the standard NCEP software suite and are partitioned into subsections covering the polar caps (60°–90°) and midlatitudes (20°–80°) of each hemisphere and the tropical region (20°N–20°S). Anomaly correlations of geopotential heights are shown at several pressure levels in the polar regions and midlatitudes. The root-mean-square error (RMSE) for 850- and 200-hPa wind vector differences are shown for the tropical region. The geographical distributions of forecast impacts on geopotential heights are also examined. The influence these data types have on tropical cyclone track forecasts are shown for both the Atlantic and Pacific basins and again are computed using standard algorithms developed and maintained at NCEP. The results demonstrate a positive impact from all data types with AMSU and rawinsonde data providing the largest anomaly correlation improvements in all zonal regions examined. Smaller forecast improvements are noticed from each of the other data types. In the Atlantic basin, each of the four satellite data types provides nearly equal improvement to the tropical cyclone track forecasts; however, GEO winds provide the largest improvement to track forecasts in the Pacific basin.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference34 articles.

1. Determination of oceanic total precipitable water from the SSM/I.;Alishouse;IEEE Trans. Geosci. Remote Sens.,1990

2. The New Global Operational Analysis System at the National Meteorological Center.;Derber;Wea. Forecasting,1991

3. Goerss, J. S., and T. F.Hogan, 2006: Impact of satellite observations and forecast model improvements on tropical cyclone track forecasts. Preprints, 27th Conf. on Hurricanes and Tropical Meteorology, Monterey, CA, Amer. Meteor. Soc., P5.2.

4. Recent changes implemented into the Global Forecast System at NMC.;Kanamitsu;Wea. Forecasting,1991

5. Kelly, G. , 1997: Influence of observations on the operational ECMWF system. Tech. Proc. Ninth Int. TOVS Study Conf., Igls, Austria, Int. TOVS Working Group, 239–244.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3