SEA-POL Goes to Sea

Author:

Rutledge Steven A.1,Chandrasekar V.2,Fuchs Brody1,George Jim2,Junyent Francesc2,Dolan Brenda1,Kennedy Patrick C.1,Drushka Kyla3

Affiliation:

1. Department of Atmospheric Science, Colorado State University, Fort Collins, Colorado

2. Department of Electrical and Computer Engineering, Colorado State University, Fort Collins, Colorado

3. Applied Physics Laboratory, University of Washington, Seattle, Washington

Abstract

AbstractA new, advanced radar has been developed at Colorado State University (CSU). The Sea-Going Polarimetric (SEA-POL) radar is a C-band, polarimetric Doppler radar specifically designed to deploy on research ships. SEA-POL is the first such weather radar developed in the United States. Ship-based weather radars have a long history, dating back to GATE in 1974. The GATE radars measured only reflectivity. After GATE, ship radars also provided Doppler measurements. SEA-POL represents the next advancement by adding dual-polarization technology, the ability to transmit and receive both horizontal and vertical polarizations. This configuration provides information about hydrometeor size, shape, and phase. As a result, superior rain-rate estimates are afforded by the dual-polarization technology, along with hydrometeor identification and overall improved data quality. SEA-POL made its first deployment as part of the Salinity Processes in the Upper Ocean Regional Study, second field phase (SPURS-2) fall 2017 cruise to the eastern tropical Pacific, sailing on the R/V Roger Revelle. SPURS-2 was a field project to investigate the fate of freshwater deposited on the ocean’s surface. Oceanographers are keenly interested in how fast these freshwater patches mix out by wind and upper-ocean turbulence, as the less dense rainfall sitting atop the salty ocean inhibits mixing through increased stability. To this end, during SPURS-2, SEA-POL produced rain maps identifying the location of freshwater lenses on the ocean’s surface thereby providing context for measurements of SST and salinity. Examples of SEA-POL polarization measurements are also discussed to assess microphysical processes within oceanic convection. Future ocean-based field campaigns will now benefit from SEA-POL’s advanced dual-polarization technology.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3