The North American Monsoon GPS Transect Experiment 2013

Author:

Serra Yolande L.1,Adams David K.2,Minjarez-Sosa Carlos3,Moker James M.4,Arellano Avelino F.4,Castro Christopher L.4,Quintanar Arturo I.2,Alatorre Luis5,Granados Alfredo5,Vazquez G. Esteban6,Holub Kirk7,DeMets C.8

Affiliation:

1. University of Washington, Seattle, Washington

2. Universidad Nacional Autónoma de México, Mexico City, Mexico

3. Universidad de Sonora, Hermosillo, Mexico

4. The University of Arizona, Tucson, Arizona

5. Universidad Autónoma de Ciudad Juárez, Chihuahua, Mexico

6. Universidad Autónoma de Sinaloa, Culiacán, Mexico

7. National Oceanic and Atmospheric Administration, Boulder, Colorado

8. University of Wisconsin–Madison, Madison, Wisconsin

Abstract

Abstract Northwestern Mexico experiences large variations in water vapor on seasonal time scales in association with the North American monsoon, as well as during the monsoon associated with upper-tropospheric troughs, mesoscale convective systems, tropical easterly waves, and tropical cyclones. Together these events provide more than half of the annual rainfall to the region. A sufficient density of meteorological observations is required to properly observe, understand, and forecast the important processes contributing to the development of organized convection over northwestern Mexico. The stability of observations over long time periods is also of interest to monitor seasonal and longer-time-scale variability in the water cycle. For more than a decade, the U.S. Global Positioning System (GPS) has been used to obtain tropospheric precipitable water vapor (PWV) for applications in the atmospheric sciences. There is particular interest in establishing these systems where conventional operational meteorological networks are not possible due to the lack of financial or human resources to support the network. Here, we provide an overview of the North American Monsoon GPS Transect Experiment 2013 in northwestern Mexico for the study of mesoscale processes and the impact of PWV observations on high-resolution model forecasts of organized convective events during the 2013 monsoon. Some highlights are presented, as well as a look forward at GPS networks with surface meteorology (GPS-Met) planned for the region that will be capable of capturing a wider range of water vapor variability in both space and time across Mexico and into the southwestern United States.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3