Object-Based Verification of a Prototype Warn-on-Forecast System

Author:

Skinner Patrick S.12,Wheatley Dustan M.3,Knopfmeier Kent H.12,Reinhart Anthony E.12,Choate Jessica J.12,Jones Thomas A.12,Creager Gerald J.12,Dowell David C.4,Alexander Curtis R.4,Ladwig Therese T.45,Wicker Louis J.2,Heinselman Pamela L.2,Minnis Patrick6,Palikonda Rabindra7

Affiliation:

1. a Cooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, Oklahoma

2. b NOAA/OAR/National Severe Storms Laboratory, Norman, Oklahoma

3. c Louisville, Kentucky

4. d NOAA/OAR/Earth System Research Laboratory, Boulder, Colorado

5. e Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, Boulder, Colorado

6. f NASA Langley Research Center, Hampton, Virginia

7. g Science Systems and Applications Inc., Hampton, Virginia

Abstract

AbstractAn object-based verification methodology for the NSSL Experimental Warn-on-Forecast System for ensembles (NEWS-e) has been developed and applied to 32 cases between December 2015 and June 2017. NEWS-e forecast objects of composite reflectivity and 30-min updraft helicity swaths are matched to corresponding reflectivity and rotation track objects in Multi-Radar Multi-Sensor system data on space and time scales typical of a National Weather Service warning. Object matching allows contingency-table-based verification statistics to be used to establish baseline performance metrics for NEWS-e thunderstorm and mesocyclone forecasts. NEWS-e critical success index (CSI) scores of reflectivity (updraft helicity) forecasts decrease from approximately 0.7 (0.4) to 0.4 (0.2) over 3 h of forecast time. CSI scores decrease through the forecast period, indicating that errors do not saturate during the 3-h forecast. Lower verification scores for rotation track forecasts are primarily a result of a high-frequency bias. Comparison of different system configurations used in 2016 and 2017 shows an increase in skill for 2017 reflectivity forecasts, attributable mainly to improvements in the forecast initial conditions. A small decrease in skill in 2017 rotation track forecasts is likely a result of sample differences between 2016 and 2017. Although large case-to-case variation is present, evidence is found that NEWS-e forecast skill improves with increasing object size and intensity.

Funder

National Oceanic and Atmospheric Administration

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3