Regional Cloud Forecast Verification Using Standard, Spatial, and Object-Oriented Methods

Author:

Christophersen H.1,Nachamkin J.1,Davis W.2

Affiliation:

1. a Naval Research Laboratory, Monterey, California

2. b DeVine, Monterey, California

Abstract

Abstract This study assesses the accuracy of the Coupled Ocean–Atmosphere Mesoscale Prediction System (COAMPS) forecasts for clouds within stable and unstable environments (thereafter refers as “stable” and “unstable” clouds). This evaluation is conducted by comparing these forecasts against satellite retrievals through a combination of traditional, spatial, and object-based methods. To facilitate this assessment, the Model Evaluation Tools (MET) community tool is employed. The findings underscore the significance of fine-tuning the MET parameters to achieve a more accurate representation of the features under scrutiny. The study’s results reveal that when employing traditional pointwise statistics (e.g., frequency bias and equitable threat score), there is consistency in the results whether calculated from Method for Object-Based Diagnostic Evaluation (MODE)-based objects or derived from the complete fields. Furthermore, the object-based statistics offer valuable insights, indicating that COAMPS generally predicts cloud object locations accurately, though the spread of these predicted locations tends to increase with time. It tends to overpredict the object area for unstable clouds while underpredicting it for stable clouds over time. These results are in alignment with the traditional pointwise bias scores for the entire grid. Overall, the spatial metrics provided by the object-based verification methods emerge as crucial and practical tools for the validation of cloud forecasts. Significance Statement As the general Navy meteorological and oceanographic (METOC) community engages in collaboration with the broader scientific community, our goal is to harness community tools like MET for the systematic evaluation of weather forecasts, with a specific focus on variables crucial to the Navy. Clouds, given their significant impact on visibility, hold particular importance in our investigations. Cloud forecasts pose unique challenges, primarily attributable to the intricate physics governing cloud development and the complexity of representing these processes within numerical models. Cloud observations are also constrained by limitations, arising from both top-down satellite measurements and bottom-up ground-based measurements. This study illustrates that, with a comprehensive understanding of community tools, cloud forecasts can be consistently verified. This verification encompasses traditional evaluation methods, measuring general qualities such as bias and root-mean-squared error, as well as newer techniques like spatial and object-based methods designed to account for displacement errors.

Funder

U.S. Naval Research Laboratory

Publisher

American Meteorological Society

Reference30 articles.

1. Cloud properties observed from the surface and by satellite at the northern edge of the Southern Ocean;Alexander, S. P.,2018

2. Validation of a weather forecast model at radiance level against satellite observations allowing quantification of temperature, humidity, and cloud-related biases;Bani Shahabadi, M. B.,2016

3. COSP: Satellite simulation software for model assessment;Bodas-Salcedo, A.,2011

4. Object-based evaluation of a numerical weather prediction model’s performance through forecast storm characteristic analysis;Cai, H.,2015

5. Chen, S., and Coauthors, 2003: COAMPS version 3 model description-general theory and equations. Naval Research Laboratory Tech. Note NRL/PU/7500-03448, 143 pp.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3