Affiliation:
1. Desert Research Institute, Reno, Nevada
Abstract
Abstract
Cloud microphysics and cloud condensation nuclei (CCN) measurements from two marine stratus cloud projects are presented and analyzed. Results show that the increase of cloud droplet concentrations Nc with CCN concentrations NCCN rolls off for NCCN at 1% supersaturation (S)N1% above 400 cm−3. Moreover, at such high concentrations Nc was not so well correlated with NCCN but tended to be more closely related to vertical velocity W or variations of W (σw). This changeover from predominate Nc dependence on NCCN to Nc dependence on W or σw is due to the higher slope k of CCN spectra at lower S, which is made more relevant by the lower cloud S that is forced by higher NCCN. Higher k makes greater influence of W or σw variations than NCCN variations on Nc. This changeover at high NCCN thus seems to limit the indirect aerosol effect (IAE).
On the other hand, in clean-air stratus cloud S often exceeded 1% and decreased to slightly less than 0.1% in polluted conditions. This means that smaller CCN [those with higher critical S (Sc)], which are generally more numerous than larger CCN (lower Sc), are capable of producing stratus cloud droplets, especially when they are advected into clean marine air masses where they can induce IAE. Positive correlations between turbulence σw and NCCN are attributed to greater differential latent heat exchange of smaller more numerous cloud droplets that evaporate more readily. Such apparent CCN influences on cloud dynamics tend to support trends that oppose conventional IAE, that is, less rather than greater cloudiness in polluted environments.
Publisher
American Meteorological Society
Cited by
48 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献