Relationships between particles, cloud condensation nuclei and cloud droplet activation during the third Pallas Cloud Experiment

Author:

Anttila T.,Brus D.,Jaatinen A.,Hyvärinen A.-P.,Kivekäs N.,Romakkaniemi S.,Komppula M.,Lihavainen H.

Abstract

Abstract. Concurrent measurement of aerosols, cloud condensation nuclei (CCN) and cloud droplet activation were carried out as a part of the third Pallas Cloud Experiment (PaCE-3) which took place at a ground based site located on northern Finland during the autumn of 2009. In this study, we investigate relationships between the aerosol properties, CCN and size resolved cloud droplet activation. During the investigated cloudy periods, the inferred number of cloud droplets (CDNC) varied typically between 50 and 150 cm−3 and displayed a linear correlation both with the number of particles having sizes over 100 nm and with the CCN concentrations at 0.4% supersaturation. Furthermore, the diameter corresponding to the 50% activation fraction, D50, was generally in the range of 80 to 120 nm. The measured CCN concentrations were compared with predictions of a numerical model which used the measured size distribution and size resolved hygroscopicity as input. Assuming that the droplet surface tension is equal to that of water, the measured and predicted CCN concentrations were generally within 30%. We also simulated size dependent cloud droplet activation with a previously developed air parcel model. By forcing the model to reproduce the experimental values of CDNC, adiabatic estimates for the updraft velocity and the maximum supersaturation reached in the clouds were derived. Performed sensitivity studies showed further that the observed variability in CDNC was driven mainly by changes in the particle size distribution while the variations in the updraft velocity and hygroscopicity contributed to a lesser extent. The results of the study corroborate conclusions of previous studies according to which the number of cloud droplets formed in clean air masses close to the Arctic is determined mainly by the number of available CCN.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3