Observations of the Variation in Aerosol and Cloud Microphysics along the 20°S Transect on 13 November 2008 during VOCALS-REx

Author:

Cui Zhiqiang1,Gadian Alan2,Blyth Alan2,Crosier Jonathan3,Crawford Ian4

Affiliation:

1. Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, Leeds, United Kingdom

2. National Centre for Atmospheric Science, University of Leeds, Leeds, United Kingdom

3. National Centre for Atmospheric Science, University of Leeds, Leeds, and Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom

4. Centre for Atmospheric Science, School of Earth, Atmospheric and Environmental Sciences, University of Manchester, Manchester, United Kingdom

Abstract

Abstract Observations are presented of the structure of the marine boundary layer (MBL) in the southeastern Pacific made with the U.K. BAe 146 aircraft on 13 November 2008 as it flew at a variety of altitudes along 20°S between the coast of Chile and a buoy 950 km offshore during the Variability of American Monsoon Systems (VAMOS) Ocean–Cloud–Atmosphere–Land Study (VOCALS) Regional Experiment (REx). The purpose of the study is to determine the variations along the 20°S transect in the clouds and boundary layer on this particular day as compared to the typical structure determined from the composite studies. The aircraft flew in three regions on this day: relatively continuous thick stratocumulus clouds, open cells, and closed cells. Results show three particular features. First, the results of the cloud microphysics are consistent with the typical behavior showing a decrease in aerosol particles by a factor of 3–4, and a decrease in cloud droplet number concentration westward from the coast from about 200 to 100 cm−3 or less with a corresponding increase in the concentration of drizzle drops with a maximum in open cells. Sulfate was dominant in the aerosol mass. Second, there was evidence of decoupling of the marine boundary layer that coincided with a change in the cloud type from stratiform to convective. The case differs from the average found in VOCALS in that the decoupling is not consistent with the deepening–warming idea. Precipitation is thought to possibly be the cause instead, suggesting that aerosol might play a controlling role in the cloud–boundary layer structure. Finally, cold pools were observed in the MBL from the dropsonde data.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3