Machine-Learning Based Analysis of Liquid Water Path Adjustments to Aerosol Perturbations in Marine Boundary Layer Clouds Using Satellite Observations

Author:

Zipfel LukasORCID,Andersen HendrikORCID,Cermak JanORCID

Abstract

Changes in marine boundary layer cloud (MBLC) radiative properties in response to aerosol perturbations are largely responsible for uncertainties in future climate predictions. In particular, the relationship between the cloud droplet number concentration (Nd, a proxy for aerosol) and the cloud liquid water path (LWP) remains challenging to quantify from observations. In this study, satellite observations from multiple polar-orbiting platforms for 2006–2011 are used in combination with atmospheric reanalysis data in a regional machine learning model to predict changes in LWP in MBLCs in the Southeast Atlantic. The impact of predictor variables on the model output is analysed using Shapley values as a technique of explainable machine learning. Within the machine learning model, precipitation fraction, cloud top height, and Nd are identified as important cloud state predictors for LWP, with dynamical proxies and sea surface temperature (SST) being the most important environmental predictors. A positive nonlinear relationship between LWP and Nd is found, with a weaker sensitivity at high cloud droplet concentrations. This relationship is found to be dependent on other predictors in the model: Nd–LWP sensitivity is higher in precipitating clouds and decreases with increasing SSTs.

Funder

European Union

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3