Turning Ocean Mixing Upside Down

Author:

Ferrari Raffaele1,Mashayek Ali1,McDougall Trevor J.2,Nikurashin Maxim3,Campin Jean-Michael1

Affiliation:

1. Massachusetts Institute of Technology, Cambridge, Massachusetts

2. School of Mathematics and Statistics, University of New South Wales, Sydney, New South Wales, Australia

3. Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, and ARC Centre of Excellence for Climate System Science, Sydney, New South Wales, Australia

Abstract

AbstractIt is generally understood that small-scale mixing, such as is caused by breaking internal waves, drives upwelling of the densest ocean waters that sink to the ocean bottom at high latitudes. However, the observational evidence that the strong turbulent fluxes generated by small-scale mixing in the stratified ocean interior are more vigorous close to the ocean bottom boundary than above implies that small-scale mixing converts light waters into denser ones, thus driving a net sinking of abyssal waters. Using a combination of theoretical ideas and numerical models, it is argued that abyssal waters upwell along weakly stratified boundary layers, where small-scale mixing of density decreases to zero to satisfy the no density flux condition at the ocean bottom. The abyssal ocean meridional overturning circulation is the small residual of a large net sinking of waters, driven by small-scale mixing in the stratified interior above the bottom boundary layers, and a slightly larger net upwelling, driven by the decay of small-scale mixing in the boundary layers. The crucial importance of upwelling along boundary layers in closing the abyssal overturning circulation is the main finding of this work.

Publisher

American Meteorological Society

Subject

Oceanography

Reference67 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3