A Framework for Constraining Ocean Mixing Rates and Overturning Circulation from Age Tracers

Author:

Zhang Boer1ORCID,Linz Marianna12,Sun Shantong3,Thompson Andrew F.4

Affiliation:

1. a School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts

2. b Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts

3. c Laoshan Laboratory, Qingdao, China

4. d California Institute of Technology, Pasadena, California

Abstract

Abstract The age of seawater refers to the amount of time that has elapsed since that water encountered the surface. This age measures the ventilation rate of the ocean, and the spatial distribution of age can be influenced by multiple processes, such as overturning circulation, ocean mixing, and air–sea exchange. In this work, we aim to gain new quantitative insights about how the ocean’s age tracer distribution reflects the strength of the meridional overturning circulation and diapycnal diffusivity. We propose an integral constraint that relates the age tracer flow across an isopycnal surface to the geometry of the surface. With the integral constraint, a relationship between the globally averaged effective diapycnal diffusivity and the meridional overturning strength at an arbitrary density level can be inferred from the age tracer concentration near that level. The theory is tested in a set of idealized single-basin simulations. A key insight from this study is that the age difference between regions of upwelling and downwelling, rather than any single absolute age value, is the best indicator of overturning strength. The framework has also been adapted to estimate the strength of abyssal overturning circulation in the modern North Pacific, and we demonstrate that the age field provides an estimate of the circulation strength consistent with previous studies. This framework could potentially constrain ocean circulation and mixing rates from age-like realistic tracers (e.g., radiocarbon) in both past and present climates. Significance Statement The age of seawater—the local mean time since local water from different pathways was last at the surface—is a valuable indicator of ocean circulation and the transport time scale of heat and carbon. We introduce a novel constraint that relates total age flow across a density surface to its geometry, which provides new insights into constraining ocean circulation and mixing rates from age-like realistic tracers (e.g., radiocarbon).

Funder

National Science Foundation

Publisher

American Meteorological Society

Reference90 articles.

1. The great ocean conveyor;Broecker, W. S.,1991

2. A water mass model of the world ocean;Bryan, K.,1979

3. The glacial mid-depth radiocarbon bulge and its implications for the overturning circulation;Burke, A.,2015

4. Dynamics of an abyssal circulation driven by bottom-intensified mixing on slopes;Callies, J.,2018

5. The global overturning circulation;Cessi, P.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3