Physical Mechanisms Linking the Winter Pacific–North American Teleconnection Pattern to Spring North American Snow Depth

Author:

Ge Yan1,Gong Gavin1,Frei Allan2

Affiliation:

1. Department of Earth and Environmental Engineering, Columbia University, New York, New York

2. Department of Geography, Graduate Program in Earth and Environmental Sciences, Hunter College of the City University of New York, New York, New York

Abstract

Abstract The wintertime Pacific–North American (PNA) teleconnection pattern has previously been shown to influence springtime snow conditions over portions of North America. This paper develops a more complete physical understanding of this linkage across the continent, using a recently released long-term, continental-scale gridded North American snow depth dataset and the 40-yr European Centre for Medium-Range Weather Forecasts Re-Analysis data. An empirical orthogonal function–based filtering process is used to identify and isolate the interannual snow depth variations associated with PNA. Then linear and partial correlations are employed to investigate the physical mechanisms that link winter PNA with spring snow depth. In the positive phase of PNA, the enhanced PNA pressure centers lead to warmer temperatures over northwestern North America and less precipitation at midlatitudes. The temperature and precipitation pathways act independently and in distinct geographical regions, and together they serve to reduce winter snow depth across much of North America. Winter anomalies in the snow depth field then tend to persist into spring. Dynamic mechanisms responsible for the PNA-influenced North American precipitation and temperature anomalies, involving moisture transport and cold air intrusions, are confirmed in this study and also extended to continental snow depth anomalies.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3