Abstract
AbstractThe decline in snowpack across the western United States is one of the most pressing threats posed by climate change to regional economies and livelihoods. Earth system models are important tools for exploring past and future snowpack variability, yet their coarse spatial resolutions distort local topography and bias spatial patterns of accumulation and ablation. Here, we explore pattern-based statistical downscaling for spatially-continuous interannual snowpack estimates. We find that a few leading patterns capture the majority of snowpack variability across the western US in observations, reanalyses, and free-running simulations. Pattern-based downscaling methods yield accurate, high resolution maps that correct mean and variance biases in domain-wide simulated snowpack. Methods that use large-scale patterns as both predictors and predictands perform better than those that do not and all are superior to an interpolation-based “delta change” approach. These findings suggest that pattern-based methods are appropriate for downscaling interannual snowpack variability and that using physically meaningful large-scale patterns is more important than the details of any particular downscaling method.
Funder
national science foundation
Publisher
Springer Science and Business Media LLC
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Awareness levels of the dynamics of the climate change risk impacts;International Journal of Research in Business and Social Science (2147- 4478);2022-12-25
2. Local Adaptation: Causal Agents of Selection and Adaptive Trait Divergence;Annual Review of Ecology, Evolution, and Systematics;2022-11-02