Coupling the ISBA Land Surface Model and the TOPMODEL Hydrological Model for Mediterranean Flash-Flood Forecasting: Description, Calibration, and Validation

Author:

Bouilloud Ludovic12,Chancibault Katia13,Vincendon Béatrice1,Ducrocq Véronique1,Habets Florence4,Saulnier Georges-Marie5,Anquetin Sandrine2,Martin Eric1,Noilhan Joel1

Affiliation:

1. GAME/CNRM/Météo-France, CNRS, Toulouse, France

2. CNRS/LTHE, Grenoble, France

3. LCPC, Nantes, France

4. CNRS/UMR SISYPHE, Paris, France

5. CNRS/EDYTEM, Université de Savoie, Chambéry, France

Abstract

Abstract Innovative coupling between the soil–vegetation–atmosphere transfer (SVAT) model Interactions between Soil, Biosphere, and Atmosphere (ISBA) and the hydrological model TOPMODEL has been specifically designed for flash-flood forecasting in the Mediterranean area. The coupled model described in this study combines the advantages of the two types of model: the accurate representation of water and energy transfer between the soil and the atmosphere within the SVAT column and an explicit representation of the lateral transfer of water over the hydrological catchment unit. Another advantage of this coupling is that the number of parameters to be calibrated is reduced by two, as only two parameters instead of four parameters concern the TOPMODEL formulation used here. The parameters to be calibrated concern only the water transfer. The model was calibrated for the simulation of flash-flood events on the three main watersheds covering the French Cévennes–Vivarais region using a subset of past flash-flood events having occurred since 2000. The complementary subset of flash-flood events was then used to carry out an objective verification of the coupled model after calibration. The evaluation on these six independent past flash-flood events shows satisfactory results. The comparison of the observed and simulated hydrographs demonstrates that no flash-flood peaks are missed. Relevant information for flash-flood forecasting can always be inferred from the simulations, even for those with quite poor results, making the system useful for real-time and operational flash-flood forecasting.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3