Abstract
The representation of snow is a crucial aspect of land-surface modelling, as it has a strong influence on energy and water balances. Snow schemes with multiple layers have been shown to better describe the snowpack evolution and bring improvements to soil freezing and some hydrological processes. In this paper, the wider hydrological impact of the multi-layer snow scheme, implemented in the ECLand model, was analyzed globally on hundreds of catchments. ERA5-forced reanalysis simulations of ECLand were coupled to CaMa-Flood, as the hydrodynamic model to produce river discharge. Different sensitivity experiments were conducted to evaluate the impact of the ECLand snow and soil freezing scheme changes on the terrestrial hydrological processes, with particular focus on permafrost. It was found that the default multi-layer snow scheme can generally improve the river discharge simulation, with the exception of permafrost catchments, where snowmelt-driven floods are largely underestimated, due to the lack of surface runoff. It was also found that appropriate changes in the snow vertical discretization, destructive metamorphism, snow-soil thermal conductivity and soil freeze temperature could lead to large river discharge improvements in permafrost by adjusting the evolution of soil temperature, infiltration and the partitioning between surface and subsurface runoff.
Funder
Natural Environment Research Council
Subject
Atmospheric Science,Environmental Science (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献