Hydrological Impact of the New ECMWF Multi-Layer Snow Scheme

Author:

Zsoter ErvinORCID,Arduini GabrieleORCID,Prudhomme Christel,Stephens Elisabeth,Cloke Hannah

Abstract

The representation of snow is a crucial aspect of land-surface modelling, as it has a strong influence on energy and water balances. Snow schemes with multiple layers have been shown to better describe the snowpack evolution and bring improvements to soil freezing and some hydrological processes. In this paper, the wider hydrological impact of the multi-layer snow scheme, implemented in the ECLand model, was analyzed globally on hundreds of catchments. ERA5-forced reanalysis simulations of ECLand were coupled to CaMa-Flood, as the hydrodynamic model to produce river discharge. Different sensitivity experiments were conducted to evaluate the impact of the ECLand snow and soil freezing scheme changes on the terrestrial hydrological processes, with particular focus on permafrost. It was found that the default multi-layer snow scheme can generally improve the river discharge simulation, with the exception of permafrost catchments, where snowmelt-driven floods are largely underestimated, due to the lack of surface runoff. It was also found that appropriate changes in the snow vertical discretization, destructive metamorphism, snow-soil thermal conductivity and soil freeze temperature could lead to large river discharge improvements in permafrost by adjusting the evolution of soil temperature, infiltration and the partitioning between surface and subsurface runoff.

Funder

Natural Environment Research Council

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3