Abstract
The rainfall–runoff relationship was studied in the Wadi El Kebir watershed, located in Northeastern Algeria, using TOPMODEL (topography based hydrological model). This is a geomorphological and semi-distributed model which is used to predict the hydrological behaviour of watersheds and to calculate the water storage deficit of an aquifer in any location. It uses topographic information of the watershed to predict the extent of contributing areas in the production of runoff. TOPMODEL was applied with event-based rainfall–runoff modeling where 13 hourly rainfall series were used to predict the discharge at the basin outlet. A digital elevation model (DEM) was also used to define the contours of the basin and to map out the drainage directions and the topographic index. TOPMODEL was calibrated and validated using the measured discharges and various objective functions such as Nash (Nash-Sutcliffe) and coefficient of determination (R2). The TOPMODEL results showed a high-performance level. Indeed, after the calibration and validation procedure, the performance of the model oscillates between satisfactory and very good. For the calibration, Nash varied between 0.59 and 0.91, and R2 between 0.66 and 0.91. However, the values of these criteria coefficients were slightly reduced during the validation phase, Nash (0.53 to 0.84) and R2 (0.59 to 0.87). Also, the proposed model shows the weak contribution of groundwater flows in the hydrological response of the study area.
Publisher
Computational Hydraulics International
Subject
Water Science and Technology,Geography, Planning and Development,Civil and Structural Engineering