Scaling of GNSS Radio Occultation Impact with Observation Number Using an Ensemble of Data Assimilations

Author:

Harnisch F.1,Healy S. B.1,Bauer P.1,English S. J.1

Affiliation:

1. European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Abstract

Abstract An ensemble of data assimilations (EDA) approach is used to estimate how the impact of Global Navigation Satellite System (GNSS) radio occultation (RO) measurements scales as a function of observation number in the ECMWF numerical weather prediction system. The EDA provides an estimate of the theoretical analysis and short-range forecast error statistics, based on the ensemble “spread,” which is the standard deviation of the ensemble members about the ensemble mean. This study is based on computing how the ensemble spread of various parameters changes as a function of the number of simulated GNSS RO observations. The impact from 2000 up to 128 000 globally distributed simulated GNSS RO profiles per day is investigated. It is shown that 2000 simulated GNSS RO measurements have an impact similar to real measurements in the EDA and that the EDA-based impact of real data can be related to the impact in observing system experiments. The dependence of the ensemble statistics on observation error statistics assumed when assimilating the data, rather than the actual observation errors, is emphasized. There is no evidence of “saturation” of forecast impact even with 128 000 GNSS RO profiles per day. However, this result is a well-known consequence of always improving the theoretical analysis and short-range forecast error statistics when adding new observations that are assumed to have uncorrelated observation errors. In general, it is found that 16 000 GNSS RO profiles per day have around half the impact of 128 000 profiles, based on the reduction of ensemble spread values where the GNSS RO measurements have the largest impact.

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3