Superobbing and Thinning Scales for All-Sky Humidity Sounder Assimilation

Author:

Duncan David I.1ORCID,Bormann Niels1,Geer Alan J.1,Weston Peter1

Affiliation:

1. a European Centre for Medium-Range Weather Forecasts, Reading, United Kingdom

Abstract

Abstract Humidity sounder radiances are currently thinned to 110-km spacing prior to assimilation at ECMWF and used with no averaging applied. In this paper, the thinning scale and possible averaging of all-sky humidity sounder observations into “superobs” are considered. The short- and medium-range forecast impacts of changing the thinning and averaging scales of humidity sounder radiances prior to the data assimilation are investigated separately and then together. Superobbing acts as a low-pass filter and provides smoother images of departures, decreasing the effective sensor noise and thus the standard deviation of background departures, marginally for 183-GHz channels (5%–15%) and significantly for 118-GHz channels (5%–55%). Observations are thus more representative of the model effective resolution, with a better utilization of total information content than thinning native-resolution radiances, as less information is discarded. Whether changed in isolation or combination, the additions of data via superobbing and finer thinning are both shown to markedly improve background fits to independent observations, indicative of better short-range forecasts of humidity and improved winds via the 4D-Var tracer effect. Wind forecasts in the Southern Hemisphere are slightly improved in the medium range. A final configuration is tested at the resolution of the current operational model, with humidity sounder radiances averaged into 50-km superobs with 70-km spacing. This provides about 140% more radiances for assimilation and more finely detailed maps to analyze mesoscale features. The forecast impact of this change is larger in testing with higher model and data assimilation resolutions, showing the scale dependence of such decisions and the expected performance in an operational configuration. Significance Statement This paper investigates thinning and averaging scales for humidity-sounding microwave observations in the ECMWF data assimilation system. The introduction of spatial averaging shows a positive impact, as does the assimilation of observations with finer spacing. These changes permit more total information on humidity into the system, and both are beneficial for short-range forecasts of humidity and winds in the mid- to upper troposphere. The results highlight the interplay between spatial scales of observations and those of the analysis system, with possibilities for improved utilization in this particular case. This is expected to remain a key consideration in assimilation systems going forward, given the continued increases in the resolution of assimilation systems and forecast models.

Funder

European Organization for the Exploitation of Meteorological Satellites

Publisher

American Meteorological Society

Reference40 articles.

1. A practical assimilation approach to extract smaller-scale information from observations with spatially correlated errors: An idealized study;Bédard, J.,2020

2. Optimal convolution of AMSU-B to AMSU-A;Bennartz, R.,2000

3. Analysis error as a function of observation density for satellite temperature soundings with spatially correlated errors;Bergman, K. H.,1976

4. All-sky microwave radiances assimilated with an ensemble Kalman filter;Bonavita, M.,2020

5. Estimates of spatial and interchannel observation-error characteristics for current sounder radiances for numerical weather prediction. I: Methods and application to ATOVS data;Bormann, N.,2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3