Affiliation:
1. The Florida State University, Tallahassee, Florida
Abstract
Abstract
The authors illustrate a statistical model for predicting tornado activity in the central Great Plains by 1 March. The model predicts the number of tornado reports during April–June using February sea surface temperature (SST) data from the Gulf of Alaska (GAK) and the western Caribbean Sea (WCA). The model uses a Bayesian formulation where the likelihood on the counts is a negative binomial distribution and where the nonstationarity in tornado reporting is included as a trend term plus first-order autocorrelation. Posterior densities for the model parameters are generated using the method of integrated nested Laplacian approximation (INLA). The model yields a 51% increase in the number of tornado reports per degree Celsius increase in SST over the WCA and a 15% decrease in the number of reports per degree Celsius increase in SST over the GAK. These significant relationships are broadly consistent with a physical understanding of large-scale atmospheric patterns conducive to severe convective storms across the Great Plains. The SST covariates explain 11% of the out-of-sample variability in observed F1–F5 tornado reports. The paper demonstrates the utility of INLA for fitting Bayesian models to tornado climate data.
Publisher
American Meteorological Society
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献