Predicting Spring Tornado Activity in the Central Great Plains by 1 March

Author:

Elsner James B.1,Widen Holly M.1

Affiliation:

1. The Florida State University, Tallahassee, Florida

Abstract

Abstract The authors illustrate a statistical model for predicting tornado activity in the central Great Plains by 1 March. The model predicts the number of tornado reports during April–June using February sea surface temperature (SST) data from the Gulf of Alaska (GAK) and the western Caribbean Sea (WCA). The model uses a Bayesian formulation where the likelihood on the counts is a negative binomial distribution and where the nonstationarity in tornado reporting is included as a trend term plus first-order autocorrelation. Posterior densities for the model parameters are generated using the method of integrated nested Laplacian approximation (INLA). The model yields a 51% increase in the number of tornado reports per degree Celsius increase in SST over the WCA and a 15% decrease in the number of reports per degree Celsius increase in SST over the GAK. These significant relationships are broadly consistent with a physical understanding of large-scale atmospheric patterns conducive to severe convective storms across the Great Plains. The SST covariates explain 11% of the out-of-sample variability in observed F1–F5 tornado reports. The paper demonstrates the utility of INLA for fitting Bayesian models to tornado climate data.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3