An Australian convective wind gust climatology using Bayesian hierarchical modelling

Author:

Spassiani Alessio C.ORCID,Mason Matthew S.,Cheng Vincent Y. S.

Abstract

AbstractTo quantify the hazard or risks associated with severe convective wind gusts, it is necessary to have a reliable and spatially complete climatology of these events. The coupling of observational and global reanalysis (ERA-Interim) data over the period 2005–2015 is used here to facilitate the development of a spatially complete convective wind gust climatology for Australia. This is done through the development of Bayesian Hierarchical models that use both weather station-based wind gust observations and seasonally averaged severe weather indices (SWI), calculated using reanalysis data, to estimate seasonal gust frequencies across the country while correcting for observational biases specifically, the sparse observational network to record events. Different SWI combinations were found to explain event counts for different seasons. For example, combinations of Lifted Index and low level wind shear were found to generate the best results for autumn and winter. While for spring and summer, the composite Microburst Index and the combination of most unstable CAPE and 0–1 km wind shear were found to be most successful. Results from these models showed a minimum in event counts during the winter months, with events that do occur mainly doing so along the southwest coast of Western Australia or along the coasts of Tasmania and Victoria. Summer is shown to have the largest event counts across the country, with the largest number of gusts occurring in northern Western Australia extending east into the Northern Territory with another maximum over northeast New South Wales. Similar trends were found with an extended application of the models to the period 1979–2015 when utilizing only reanalysis data as input. This implementation of the models highlights the versatility of the Bayesian hierarchical modelling approach and its ability, when trained, to be used in the absence of observations.

Funder

Australian Research Council

Natural Sciences and Engineering Research Council of Canada

Environment & Climate Change Canada

Publisher

Springer Science and Business Media LLC

Subject

Earth and Planetary Sciences (miscellaneous),Atmospheric Science,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3