Impact of Global Ocean Surface Warming on Seasonal-to-Interannual Climate Prediction

Author:

Luo Jing-Jia1,Behera Swadhin K.1,Masumoto Yukio2,Yamagata Toshio2

Affiliation:

1. Research Institute for Global Change, JAMSTEC, Yokohama, Japan

2. Department of Earth and Planetary Science, The University of Tokyo, Tokyo, and Research Institute for Global Change, JAMSTEC, Yokohama, Japan

Abstract

Abstract Surface air temperature (SAT) over the globe, particularly the Northern Hemisphere continents, has rapidly risen over the last 2–3 decades, leading to an abrupt shift toward a warmer climate state after 1997/98. Whether the terrestrial warming might be caused by local response to increasing greenhouse gas (GHG) concentrations or by sea surface temperature (SST) rise is recently in dispute. The SST warming itself may be driven by both the increasing GHG forcing and slowly varying natural processes. Besides, whether the recent global warming might affect seasonal-to-interannual climate predictability is an important issue to be explored. Based on the Japan Agency for Marine-Earth Science and Technology (JAMSTEC) climate prediction system in which only observed SSTs are assimilated for coupled model initialization, the present study shows that the historical SST rise plays a key role in driving the intensified terrestrial warming over the globe. The SST warming trend, while negligible for short lead predictions, has substantial impact on the climate predictability at long lead times (>1 yr) particularly in the extratropics. The tropical climate predictability, however, is little influenced by global warming. Given a perfect warming trend and/or a perfect model, global SAT and precipitation could be predicted beyond two years in advance with an anomaly correlation skill above ∼0.6. Without assimilating ocean subsurface observations, model initial conditions show a strong spurious cooling drift of subsurface temperature; this is caused by large negative surface heat flux damping arising from the SST-nudging initialization. The spurious subsurface cooling drift acts to weaken the initial SST warming trend during model forecasts, leading to even negative trends of global SAT and precipitation at long lead times and hence deteriorating the global climate predictability. Concerning the important influence of the subsurface temperature on the global SAT trend, future efforts are required to develop a good scheme for assimilating subsurface information particularly in the extratropical oceans.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3