A CGCM Study on the Interaction between IOD and ENSO

Author:

Behera Swadhin K.1,Luo Jing Jia1,Masson Sebastien1,Rao Suryachandra A.1,Sakuma Hirofumi1,Yamagata Toshio2

Affiliation:

1. Frontier Research Center for Global Change/JAMSTEC, Yokohama, Japan

2. Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan

Abstract

Abstract An atmosphere–ocean coupled general circulation model known as the Scale Interaction Experiment Frontier version 1 (SINTEX-F1) model is used to understand the intrinsic variability of the Indian Ocean dipole (IOD). In addition to a globally coupled control experiment, a Pacific decoupled noENSO experiment has been conducted. In the latter, the El Niño–Southern Oscillation (ENSO) variability is suppressed by decoupling the tropical Pacific Ocean from the atmosphere. The ocean–atmosphere conditions related to the IOD are realistically simulated by both experiments including the characteristic east–west dipole in SST anomalies. This demonstrates that the dipole mode in the Indian Ocean is mainly determined by intrinsic processes within the basin. In the EOF analysis of SST anomalies from the noENSO experiment, the IOD takes the dominant seat instead of the basinwide monopole mode. Even the coupled feedback among anomalies of upper-ocean heat content, SST, wind, and Walker circulation over the Indian Ocean is reproduced. As in the observation, IOD peaks in boreal fall for both model experiments. In the absence of ENSO variability the interannual IOD variability is dominantly biennial. The ENSO variability is found to affect the periodicity, strength, and formation processes of the IOD in years of co-occurrences. The amplitudes of SST anomalies in the western pole of co-occurring IODs are aided by dynamical and thermodynamical modifications related to the ENSO-induced wind variability. Anomalous latent heat flux and vertical heat convergence associated with the modified Walker circulation contribute to the alteration of western anomalies. It is found that 42% of IOD events affected by changes in the Walker circulation are related to the tropical Pacific variabilities including ENSO. The formation is delayed until boreal summer for those IODs, which otherwise form in boreal spring as in the noENSO experiment.

Publisher

American Meteorological Society

Subject

Atmospheric Science

Reference61 articles.

1. Coupled dynamics over the Indian Ocean: Spring initiation of the Zonal Mode.;Annamalai;Deep-Sea Res.,2003

2. Decadal variability of the Indian Ocean Dipole.;Ashok;Geophys. Res. Lett.,2004

3. On dipole-like variability in the tropical Indian Ocean.;Baquero-Bernal;J. Climate,2002

4. Subtropical SST dipole events in the southern Indian Ocean.;Behera;Geophys. Res. Lett.,2001

5. Influence of the Indian Ocean Dipole on the Southern Oscillation.;Behera;J. Meteor. Soc. Japan,2003

Cited by 293 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3