A Bayesian Approach for Statistical–Physical Bulk Parameterization of Rain Microphysics. Part I: Scheme Description

Author:

Morrison Hugh1,van Lier-Walqui Marcus2,Kumjian Matthew R.3,Prat Olivier P.4

Affiliation:

1. National Center for Atmospheric Research, Boulder, Colorado

2. NASA Goddard Institute for Space Studies, and Center for Climate Systems Research, Columbia University, New York, New York

3. Department of Meteorology and Atmospheric Science, The Pennsylvania State University, University Park, Pennsylvania

4. North Carolina Institute for Climate Studies, North Carolina State University, Asheville, North Carolina

Abstract

Abstract A new framework is proposed for the bulk parameterization of rain microphysics: the Bayesian Observationally Constrained Statistical–Physical Scheme (BOSS). It is designed to facilitate direct constraint by observations using Bayesian inference. BOSS combines existing process-level microphysical knowledge with flexible process rate formulations and parameters constrained by observations within a Bayesian framework. Using a raindrop size distribution (DSD) normalization method that relates DSD moments to one another via generalized power series, generalized multivariate power expressions are derived for the microphysical process rates as functions of a set of prognostic DSD moments. The scheme is flexible and can utilize any number and combination of prognostic moments and any number of terms in the process rate formulations. This means that both uncertainty in parameter values and structural uncertainty associated with the process rate formulations can be investigated systematically, which is not possible using traditional schemes. In this paper, BOSS is compared to two- and three-moment versions of a traditional bulk rain microphysics scheme (denoted as MORR). It is shown that some process formulations in MORR are analytically equivalent to the generalized power expressions in BOSS using one or two terms, while others are not. BOSS is able to replicate the behavior of MORR in idealized one-dimensional rainshaft tests, but with a much more flexible and systematic design. Part II of this study describes the application of BOSS to derive rain microphysical process rates and posterior parameter distributions in Bayesian experiments using Markov chain Monte Carlo sampling constrained by synthetic observations.

Funder

US Department of Energy

Publisher

American Meteorological Society

Subject

Atmospheric Science

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3