Evaluation of Turbulence and Dispersion in Multiscale Atmospheric Simulations over Complex Urban Terrain during the Joint Urban 2003 Field Campaign

Author:

Wiersema David J.1,Lundquist Katherine A.1,Mirocha Jeffrey D.1,Katopodes Chow Fotini2

Affiliation:

1. a Lawrence Livermore National Laboratory, Livermore, California

2. b University of California, Berkeley, Berkeley, California

Abstract

Abstract This paper evaluates the representation of turbulence and its effect on transport and dispersion within multiscale and microscale-only simulations in an urban environment. These simulations, run using the Weather Research and Forecasting Model with the addition of an immersed boundary method, predict transport and mixing during a controlled tracer release from the Joint Urban 2003 field campaign in Oklahoma City, Oklahoma. This work extends the results of a recent study through analysis of turbulence kinetic energy and turbulence spectra and their role in accurately simulating wind speed, direction, and tracer concentration. The significance and role of surface heat fluxes and use of the cell perturbation method in the numerical simulation setup are also examined. Our previous study detailed the model development necessary for our multiscale simulations, examined model skill at predicting wind speeds and tracer concentrations, and demonstrated that dynamic downscaling from mesoscale to microscale through a sequence of nested simulations can improve predictions of transport and dispersion relative to a microscale-only simulation forced by idealized meteorology. Here, predictions are compared with observations to assess qualitative agreement and statistical model skill at predicting wind speed, wind direction, tracer concentration, and turbulent kinetic energy at locations throughout the city. We also investigate the scale distribution of turbulence and the associated impact on model skill, particularly for predictions of transport and dispersion. Our results show that downscaled large-scale turbulence, which is unique to the multiscale simulations, significantly improves predictions of tracer concentrations in this complex urban environment. Significance Statement Simulations of atmospheric transport and mixing in urban environments have many applications, including pollution modeling for urban planning or informing emergency response following a hazardous release. These applications include phenomena with spatial scales spanning from millimeters to kilometers. Most simulations resolve flow only within the urban area of interest, omitting larger scales of turbulence and regional influences. This study examines a method that resolves both the small and large-scale flow features. We evaluate simulation accuracy by comparing predictions with observations from an experiment involving the release of a tracer gas in Oklahoma City, Oklahoma, with emphasis on correctly modeling turbulent fluctuations. Our results demonstrate the importance of resolving large-scale flow features when predicting transport and dispersion in urban environments.

Funder

Lawrence Livermore National Laboratory

Publisher

American Meteorological Society

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3